The present work investigates the modeling of pre-exascale input/output (I/O) workloads of Adaptive Mesh Refinement (AMR) simulations through a simple proxy application. We collect data from the AMReX Castro framework running on the Summit supercomputer for a wide range of scales and mesh partitions for the hydrodynamic Sedov case as a baseline to provide sufficient coverage to the formulated proxy model. The non-linear analysis data production rates are quantified as a function of a set of input parameters such as output frequency, grid size, number of levels, and the Courant-Friedrichs-Lewy (CFL) condition number for each rank, mesh level and simulation time step. Linear regression is then applied to formulate a simple analytical model which allows to translate AMReX inputs into MACSio proxy I/O application parameters, resulting in a simple "kernel" approximation for data production at each time step. Results show that MACSio can simulate actual AMReX non-linear "static" I/O workloads to a certain degree of confidence on the Summit supercomputer using the present methodology. The goal is to provide an initial level of understanding of AMR I/O workloads via lightweight proxy applications models to facilitate autotune data management strategies in anticipation of exascale systems.


翻译:目前的工作通过一个简单的代理应用程序,对适应性精炼(AMR)模拟的适应性精炼(AMR)前超规模投入/输出(I/O)工作量的建模进行了调查。我们从峰顶超级计算机上运行的AMREX Castro框架收集数据,用于广泛规模和流体动力Sedov 的网状分区,作为基准,为已拟订的代用模型提供足够的覆盖面。非线性分析数据生成率被量化为一组投入参数的函数,如输出频率、网格大小、级别数量、以及每级级Courant-Friedrichs-Lewy(CFL)条件号。然后,线状回归用于制定一个简单的分析模型,将AMREX投入转化为MACSio 代用I/O应用参数,从而在每一阶段为数据制作提供一个简单的“核心”近似值。结果显示,MACSio能够模拟实际的AMReX非线性“静态” I/O工作量,使首脑会议的超重机级预期值条件得到某种程度的信任。利用目前的方法对A级超重机压管理系统的初步理解。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月17日
Arxiv
0+阅读 · 2022年7月16日
Arxiv
0+阅读 · 2022年7月15日
Arxiv
28+阅读 · 2021年9月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员