The present work investigates the modeling of pre-exascale input/output (I/O) workloads of Adaptive Mesh Refinement (AMR) simulations through a simple proxy application. We collect data from the AMReX Castro framework running on the Summit supercomputer for a wide range of scales and mesh partitions for the hydrodynamic Sedov case as a baseline to provide sufficient coverage to the formulated proxy model. The non-linear analysis data production rates are quantified as a function of a set of input parameters such as output frequency, grid size, number of levels, and the Courant-Friedrichs-Lewy (CFL) condition number for each rank, mesh level and simulation time step. Linear regression is then applied to formulate a simple analytical model which allows to translate AMReX inputs into MACSio proxy I/O application parameters, resulting in a simple "kernel" approximation for data production at each time step. Results show that MACSio can simulate actual AMReX non-linear "static" I/O workloads to a certain degree of confidence on the Summit supercomputer using the present methodology. The goal is to provide an initial level of understanding of AMR I/O workloads via lightweight proxy applications models to facilitate autotune data management strategies in anticipation of exascale systems.
翻译:目前的工作通过一个简单的代理应用程序,对适应性精炼(AMR)模拟的适应性精炼(AMR)前超规模投入/输出(I/O)工作量的建模进行了调查。我们从峰顶超级计算机上运行的AMREX Castro框架收集数据,用于广泛规模和流体动力Sedov 的网状分区,作为基准,为已拟订的代用模型提供足够的覆盖面。非线性分析数据生成率被量化为一组投入参数的函数,如输出频率、网格大小、级别数量、以及每级级Courant-Friedrichs-Lewy(CFL)条件号。然后,线状回归用于制定一个简单的分析模型,将AMREX投入转化为MACSio 代用I/O应用参数,从而在每一阶段为数据制作提供一个简单的“核心”近似值。结果显示,MACSio能够模拟实际的AMReX非线性“静态” I/O工作量,使首脑会议的超重机级预期值条件得到某种程度的信任。利用目前的方法对A级超重机压管理系统的初步理解。