When a patient is admitted to the intensive care unit (ICU) after a traumatic brain injury (TBI), an early prognosis is essential for baseline risk adjustment and shared decision making. TBI outcomes are commonly categorised by the Glasgow Outcome Scale-Extended (GOSE) into 8, ordered levels of functional recovery at 6 months after injury. Existing ICU prognostic models predict binary outcomes at a certain threshold of GOSE (e.g., prediction of survival [GOSE>1] or functional independence [GOSE>4]). We aimed to develop ordinal prediction models that concurrently predict probabilities of each GOSE score. From a prospective cohort (n=1,550, 65 centres) in the ICU stratum of the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) patient dataset, we extracted all clinical information within 24 hours of ICU admission (1,151 predictors) and 6-month GOSE scores. We analysed the effect of 2 design elements on ordinal model performance: (1) the baseline predictor set, ranging from a concise set of 10 validated predictors to a token-embedded representation of all possible predictors, and (2) the modelling strategy, from ordinal logistic regression to multinomial deep learning. With repeated k-fold cross-validation, we found that expanding the baseline predictor set significantly improved ordinal prediction performance while increasing analytical complexity did not. Half of these gains could be achieved with the addition of 8 high-impact predictors (2 demographic variables, 4 protein biomarkers, and 2 severity assessments) to the concise set. At best, ordinal models achieved 0.76 (95% CI: 0.74-0.77) ordinal discrimination ability (ordinal c-index) and 57% (95% CI: 54%-60%) explanation of ordinal variation in 6-month GOSE (Somers' D). Our results motivate the search for informative predictors for higher GOSE and the development of ordinal dynamic prediction models.
翻译:当患者在创伤性脑损伤(TBI)后进入强化护理单位(ICU)时,早期预测对于基准风险调整和共同决策而言至关重要。TB的结果通常被格拉斯哥结果递增(GOSE) 常规分类为8, 在受伤后6个月按命令恢复功能水平。现有的ICU预测模型预测在GOSE(例如,预测生存情况[GOSE>1] 或功能独立性[GOSE>4] 的某一临界点,早期预测对于基准风险调整和共享决策至关重要。我们打算开发或定期预测模型模型,同时预测每个GOSE分的概率。TBIC(GOSE) 的预期组群(n=1,550,65个中心) 通常在受伤后6个月里,在GOSE(例如,预测生存状况[GOSE>1] 或功能独立[GOSE> 6] 后, 将所有临床结果都集中在一个临界点上。我们分析了2个设计要素对 性模型的效应:(1) 预测结果,从一个未来预测数组(从分析模型的基线预测能力(n=1, 95) 从一个连续分析模型分析到一个连续的精确分析模型的精确分析结果(2) 直位分析结果, 直径变变变数(从10的模型的模型的模型的预测值) 直径变变数(从10级) 模型的预测到一个模型的模型的模型的模型,从10级的模型, 直径变到一个直径变到一个直径算到一个直径算的模型的模型的模型,从10级的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型, 直径的模型的模型的模型的模型的模型的模型的模型的模型,从10级的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的