Energy-based models (EBMs) are a simple yet powerful framework for generative modeling. They are based on a trainable energy function which defines an associated Gibbs measure, and they can be trained and sampled from via well-established statistical tools, such as MCMC. Neural networks may be used as energy function approximators, providing both a rich class of expressive models as well as a flexible device to incorporate data structure. In this work we focus on shallow neural networks. Building from the incipient theory of overparametrized neural networks, we show that models trained in the so-called "active" regime provide a statistical advantage over their associated "lazy" or kernel regime, leading to improved adaptivity to hidden low-dimensional structure in the data distribution, as already observed in supervised learning. Our study covers both maximum likelihood and Stein Discrepancy estimators, and we validate our theoretical results with numerical experiments on synthetic data.


翻译:以能源为基础的模型(EBMS)是一个简单而有力的基因模型框架。它们基于一种可训练的能源功能,它界定了一个相关的Gibbs测量标准。它们可以通过成熟的统计工具(如MCMC等)进行培训和取样。神经网络可以用作能源功能的近似器,提供丰富的表达模型和灵活的装置,以纳入数据结构。在这项工作中,我们侧重于浅层神经网络。从过度对称神经网络的初始理论中,我们显示,在所谓的“活跃”系统中培训的模型在统计上优于其相关的“懒惰”或内核系统,从而如在监督的学习中所观察到的那样,在数据分配中改进了对隐藏的低维结构的适应性。我们的研究既包括最大的可能性,也包括Stein相异性估计器,我们用合成数据的数字实验来验证我们的理论结果。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
专知会员服务
44+阅读 · 2020年12月18日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月6日
Arxiv
0+阅读 · 2021年6月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员