We present a system for knowledge graph population with Language Models, evaluated on the Knowledge Base Construction from Pre-trained Language Models (LM-KBC) challenge at ISWC 2022. Our system involves task-specific pre-training to improve LM representation of the masked object tokens, prompt decomposition for progressive generation of candidate objects, among other methods for higher-quality retrieval. Our system is the winner of track 1 of the LM-KBC challenge, based on BERT LM; it achieves 55.0% F-1 score on the hidden test set of the challenge.
翻译:我们提出了一个包含语言模型的知识图表群系统,在ISWC 2022年对来自预先培训语言模型的知识库建设(LM-KBC)挑战进行评价。我们的系统包括针对具体任务的培训前培训,以改进隐形物体符号的LM代表,迅速分解候选物体的逐步生成,以及其他高质量检索方法。我们的系统是基于BERT LM的LM-KBC挑战第1轨的优胜者;它在挑战的隐性测试组中取得了55.0%的F-1分。