In this article we consider the application of multilevel Monte Carlo, for the estimation of normalizing constants. In particular we will make use of the filtering algorithm, the ensemble Kalman-Bucy filter (EnKBF), which is an N-particle representation of the Kalma-Bucy filter (KBF). The EnKBF is of interest as it coincides with the optimal filter in the continuous-linear setting, i.e. the KBF. This motivates our particular setup in the linear setting. The resulting methodology we will use is the multilevel ensemble Kalman-Bucy filter (MLEnKBF). We provide an analysis based on deriving Lq-bounds for the normalizing constants using both the single-level, and the multilevel algorithms. Our results will be highlighted through numerical results, where we firstly demonstrate the error-to-cost rates of the MLEnKBF comparing it to the EnKBF on a linear Gaussian model. Our analysis will be specific to one variant of the MLEnKBF, whereas the numerics will be tested on different variants. We also exploit this methodology for parameter estimation, where we test this on the models arising in atmospheric sciences, such as the stochastic Lorenz 63 and 96 model.
翻译:在本文中,我们考虑应用多层次的蒙特卡洛(Monte Carlo)来估计常数。特别是,我们将利用过滤算法,即全方位卡尔曼-布西过滤器(EnKBF),这是卡尔马-布西过滤器(KBF)的N粒子表示。EnKBF是令人感兴趣的,因为它与连续线性设置的最佳过滤器,即KBF相吻合。这在线性设置中激励着我们的特殊设置。由此产生的方法将是多层次的全方位卡尔曼-布西过滤器(MLENKBF),我们提供基于生成的Lq-bor值的分析,用于使用单级和多级算法的正常常数。我们的结果将通过数字结果来突出,我们首先通过直线性模型来显示MLEENKBFF的误差成本率。我们的分析将具体针对多层次的全级共方位卡尔曼-布西过滤器(MLENKBFFF)的一个变式,而数字基数将用来测试该变式的Lq-bFS。我们还将利用这个模型作为不同变式的模型,我们将用来测试这些变式的大气模型。我们将用来进行这种变式的模型。