Generally pre-training and long-time training computation are necessary for obtaining a good-performance text detector based on deep networks. In this paper, we present a new scene text detection network (called FANet) with a Fast convergence speed and Accurate text localization. The proposed FANet is an end-to-end text detector based on transformer feature learning and normalized Fourier descriptor modeling, where the Fourier Descriptor Proposal Network and Iterative Text Decoding Network are designed to efficiently and accurately identify text proposals. Additionally, a Dense Matching Strategy and a well-designed loss function are also proposed for optimizing the network performance. Extensive experiments are carried out to demonstrate that the proposed FANet can achieve the SOTA performance with fewer training epochs and no pre-training. When we introduce additional data for pre-training, the proposed FANet can achieve SOTA performance on MSRATD500, CTW1500 and TotalText. The ablation experiments also verify the effectiveness of our contributions.


翻译:一般而言,为了在深层网络的基础上获得良好的性能文本检测器,必须进行预培训和长期培训计算。本文还介绍了一个新的现场文本检测网络(称为FANet),其速度快速趋同和精确的文本本地化。拟议的FANet是一种端到端的文本检测器,其基础是变压器特征学习和正规化的Fourier描述模型,其中设计了Fourier描述器建议网络和迭代文本描述网络,以便高效率和准确地确定文本建议。此外,还提议了一种密集匹配战略和精心设计的丢失功能,以优化网络的性能。还进行了广泛的实验,以证明拟议的FANet能够以较少的培训程度和没有培训前培训达到SOTA的性能。当我们为培训前引入额外数据时,拟议的FANet可以在MSRATD500、CTW1500和TalText上实现SOTA的性能。此外,模拟实验还验证了我们的贡献的有效性。

1
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Active Gaze Control for Foveal Scene Exploration
Arxiv
0+阅读 · 2022年8月24日
Arxiv
21+阅读 · 2020年10月11日
Arxiv
20+阅读 · 2020年6月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员