This paper provides estimation and inference methods for an identified set's boundary (i.e., support function) where the selection among a very large number of covariates is based on modern regularized tools. I characterize the boundary using a semiparametric moment equation. Combining Neyman-orthogonality and sample splitting ideas, I construct a root-N consistent, uniformly asymptotically Gaussian estimator of the boundary and propose a multiplier bootstrap procedure to conduct inference. I apply this result to the partially linear model and the partially linear IV model with an interval-valued outcome.
翻译:本文提供了一组确定边界(即支持功能)的估计和推论方法,在其中选择大量共同变量以现代正规化工具为基础。我使用半参数时数方程式对边界进行定性。将内曼-正方形和样本分裂概念结合起来,我构建一个边界的根-N一致、统一零点和高斯天线测量仪,并提议一个进行推论的倍增靴套件程序。我将这一结果应用于部分线性模型和部分线性四型模型,并有一个间隔值结果。