We present an end-to-end methodological framework for causal segment discovery that aims to uncover differential impacts of treatments across subgroups of users in large-scale digital experiments. Building on recent developments in causal inference and non/semi-parametric statistics, our approach unifies two objectives: (1) the discovery of user segments that stand to benefit from a candidate treatment based on subgroup-specific treatment effects, and (2) the evaluation of causal impacts of dynamically assigning units to a study's treatment arm based on their predicted segment-specific benefit or harm. Our proposal is model-agnostic, capable of incorporating state-of-the-art machine learning algorithms into the estimation procedure, and is applicable in randomized A/B tests and quasi-experiments. An open source R package implementation, sherlock, is introduced.


翻译:我们为因果部分发现提出了一个端到端的方法框架,旨在发现大规模数字实验中各用户分组之间待遇的不同影响。根据因果推断和非/半参数统计的最新发展,我们的方法使两个目标一致:(1) 发现可受益于基于子分组特定待遇效果的候选治疗的用户部分,(2) 根据预测的因子特定利益或伤害,对动态分配单位到研究的治疗部分的因果影响进行评估。我们的提议是模型的不可知性,能够将最新机器学习算法纳入估算程序,并适用于随机的A/B测试和准实验。引入了开放源R软件包实施,Sherlock。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
41+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
4+阅读 · 2021年1月14日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
23+阅读 · 2018年8月3日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年12月18日
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
相关论文
Arxiv
4+阅读 · 2021年1月14日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
23+阅读 · 2018年8月3日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
5+阅读 · 2018年6月5日
Top
微信扫码咨询专知VIP会员