The objective of this paper is to investigate the ability of physics-informed neural networks to learn the magnetic field response as a function of design parameters in the context of a two-dimensional (2-D) magnetostatic problem. Our approach is as follows. First, we present a functional whose minimization is equivalent to solving parametric magnetostatic problems. Subsequently, we use a deep neural network (DNN) to represent the magnetic field as a function of space and parameters that describe geometric features and operating points. We train the DNN by minimizing the physics-informed functional using stochastic gradient descent. Lastly, we demonstrate our approach on a \mbox{ten-dimensional} EI-core electromagnet problem with parameterized geometry. We evaluate the accuracy of the DNN by comparing its predictions to those of finite element analysis.
翻译:本文的目的是研究物理学知情神经网络在二维(2-D)磁强学问题背景下,作为设计参数的函数,学习磁场反应的能力。我们的方法如下。首先,我们提出了一个功能,其最小化相当于解决参数磁强学问题。随后,我们用一个深神经网络(DNN)来代表磁场作为描述几何特征和操作点的空间和参数的功能功能。我们通过利用随机梯度梯度下降来尽量减少物理学知情功能来培训DNN。最后,我们展示了我们对参数化几何的欧洲核心电磁学问题的处理方法。我们通过比较DNN的预测与有限元素分析的预测来评估它的准确性。