Consider a set of agents who play a network game repeatedly. Agents may not know the network. They may even be unaware that they are interacting with other agents in a network. Possibly, they just understand that their payoffs depend on an unknown state that is, actually, an aggregate of the actions of their neighbors. Each time, every agent chooses an action that maximizes her instantaneous subjective expected payoff and then updates her beliefs according to what she observes. In particular, we assume that each agent only observes her realized payoff. A steady state of the resulting dynamic is a selfconfirming equilibrium given the assumed feedback. We characterize the structure of the set of selfconfirming equilibria in the given class of network games, we relate selfconfirming and Nash equilibria, and we analyze simple conjectural best-reply paths whose limit points are selfconfirming equilibria.
翻译:考虑一组玩网络游戏的代理商。 代理商可能并不了解网络。 他们甚至可能不知道他们正在与网络中的其他代理商进行互动。 可能, 他们只是理解他们的回报取决于一个未知状态, 实际上, 也就是他们邻居行动的总和。 每次, 每个代理商都选择一个动作, 使她的瞬间主观预期回报最大化, 然后根据她所观察到的情况更新她的信仰。 特别是, 我们假设每个代理商只观察她已经实现的回报。 由此形成的动态的稳健状态是假设反馈的自我确认平衡。 我们在特定类型的网络游戏中描述自我确认平衡的结构, 我们把自我确认和纳什平衡联系起来, 我们分析简单的直觉最佳修复路径, 其极限点是自我确认的平衡。