This work investigates a simple yet powerful adapter for Vision Transformer (ViT). Unlike recent visual transformers that introduce vision-specific inductive biases into their architectures, ViT achieves inferior performance on dense prediction tasks due to lacking prior information of images. To solve this issue, we propose a Vision Transformer Adapter (ViT-Adapter), which can remedy the defects of ViT and achieve comparable performance to vision-specific models by introducing inductive biases via an additional architecture. Specifically, the backbone in our framework is a vanilla transformer that can be pre-trained with multi-modal data. When fine-tuning on downstream tasks, a modality-specific adapter is used to introduce the data and tasks' prior information into the model, making it suitable for these tasks. We verify the effectiveness of our ViT-Adapter on multiple downstream tasks, including object detection, instance segmentation, and semantic segmentation. Notably, when using HTC++, our ViT-Adapter-L yields 60.1 box AP and 52.1 mask AP on COCO test-dev, surpassing Swin-L by 1.4 box AP and 1.0 mask AP. For semantic segmentation, our ViT-Adapter-L establishes a new state-of-the-art of 60.5 mIoU on ADE20K val, 0.6 points higher than SwinV2-G. We hope that the proposed ViT-Adapter could serve as an alternative for vision-specific transformers and facilitate future research.
翻译:这项工作调查了一个简单而强大的视觉变异器(VIT) 。 与最近的视觉变异器不同,这些变异器在其建筑结构中引入了针对具体视觉的感官偏差。 与最近的视觉变异器不同, VIT由于缺乏先前图像信息而在密集的预测任务上取得了低劣的性能。 为了解决这个问题,我们提议了一个视觉变异器(VIT-Adapter) (VIT) (Viet-Adapter) (Viter) (ViVT-Adapter-L), 可以通过另外的架构引入感知偏差, 实现与视觉变异模型相似的性能。 具体地说, 我们的ViT-ADA-A-ADAD) 骨干是一个香草变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变