In this work, we study the problem of single-image super-resolution (SISR) of Sentinel-2 imagery. We show that thanks to its unique sensor specification, namely the inter-band shift and alias, that deep-learning methods are able to recover fine details. By training a model using a simple $L_1$ loss, results are free of hallucinated details. For this study, we build a dataset of pairs of images Sentinel-2/PlanetScope to train and evaluate our super-resolution (SR) model.
翻译:在本文中,我们研究了 Sentinel-2 影像单图像超分辨率(SISR)的问题。我们表明,由于其独特的传感器规格,即带间移位和别名,深度学习方法能够恢复细节。通过使用简单的 $ L_1 $ loss 训练模型,结果不会出现虚假细节。为了进行此研究,我们建立了一对 Sentinel-2/PlanetScope 图像的数据集,用于训练和评估超分辨率(SR)模型。