We introduce MTT, a dependent type theory which supports multiple modalities. MTT is parametrized by a mode theory which specifies a collection of modes, modalities, and transformations between them. We show that different choices of mode theory allow us to use the same type theory to compute and reason in many modal situations, including guarded recursion, axiomatic cohesion, and parametric quantification. We reproduce examples from prior work in guarded recursion and axiomatic cohesion, thereby demonstrating that MTT constitutes a simple and usable syntax whose instantiations intuitively correspond to previous handcrafted modal type theories. In some cases, instantiating MTT to a particular situation unearths a previously unknown type theory that improves upon prior systems. Finally, we investigate the metatheory of MTT. We prove the consistency of MTT and establish canonicity through an extension of recent type-theoretic gluing techniques. These results hold irrespective of the choice of mode theory, and thus apply to a wide variety of modal situations.
翻译:我们引入了一种支持多种模式的依附类型理论 MTT。 MTT 被一种模式理论的配对, 该理论规定了模式、 模式和变异的集合。 我们显示, 不同的模式理论选择允许我们使用同一类型理论来计算和解释许多模式情况, 包括有节制的循环、 轴心凝固和参数量化。 我们复制了先前在有节制的循环和轴心凝固中所做工作的例子, 从而证明 MTT 是一个简单、 可用的语法, 其即即时和先前手工制作的模式类型理论一致。 在某些情况下, 将 MTTT 即时转换为一种在先前系统上得到改进的未知类型理论。 最后, 我们调查了MTTT的元论。 我们证明MTT的一致性, 并通过推广最近的类型神学凝固技术来建立可控性。 这些结果与模式理论的选择无关, 因此适用于多种模式。