The Connes Embedding Problem (CEP) is a problem in the theory of tracial von Neumann algebras and asks whether or not every tracial von Neumann algebra embeds into an ultrapower of the hyperfinite II$_1$ factor. The CEP has had interactions with a wide variety of areas of mathematics, including C*-algebra theory, geometric group theory, free probability, and noncommutative real algebraic geometry (to name a few). After remaining open for over 40 years, a negative solution was recently obtained as a corollary of a landmark result in quantum complexity theory known as $\operatorname{MIP}^*=\operatorname{RE}$. In these notes, we introduce all of the background material necessary to understand the proof of the negative solution of the CEP from $\operatorname{MIP}^*=\operatorname{RE}$. In fact, we outline two such proofs, one following the "traditional" route that goes via Kirchberg's QWEP problem in C*-algebra theory and Tsirelson's problem in quantum information theory and a second that uses basic ideas from logic.
翻译:Connes 嵌入问题(CEP)是Trican von Neumann代数理论中的一个问题,它询问每个trican von Neumann代数是否都嵌入超峰值 II_1美元因素的超能力。CEP与多种数学领域有互动,包括C*-algebra理论、几何组理论、自由概率和非对调真实代数几何(仅举几个名字)。在持续了40多年之后,最近取得了一个负面的解决方案,这是一个里程碑式复杂理论的必然结果,该理论被称为$\operatorname{MIPóperatorname{RE}。在这些注释中,我们介绍了所有必要的背景材料,以理解CEP的负面解决方案的证据,这些证据来自$> operatorname{MIP ⁇ operatorname{RE} 。事实上,我们概述了两个这样的证据,一个是沿着Kirchberg的QWEP问题的“路径”路径,从C*-algebra理论和Tirson 理论中使用的第二个理论和逻辑理论。