The recent advancement in deep Convolutional Neural Network (CNN) has brought insight into the automation of X-ray security screening for aviation security and beyond. Here, we explore the viability of two recent end-to-end object detection CNN architectures, Cascade R-CNN and FreeAnchor, for prohibited item detection by balancing processing time and the impact of image data compression from an operational viewpoint. Overall, we achieve maximal detection performance using a FreeAnchor architecture with a ResNet50 backbone, obtaining mean Average Precision (mAP) of 87.7 and 85.8 for using the OPIXray and SIXray benchmark datasets, showing superior performance over prior work on both. With fewer parameters and less training time, FreeAnchor achieves the highest detection inference speed of ~13 fps (3.9 ms per image). Furthermore, we evaluate the impact of lossy image compression upon detector performance. The CNN models display substantial resilience to the lossy compression, resulting in only a 1.1% decrease in mAP at the JPEG compression level of 50. Additionally, a thorough evaluation of data augmentation techniques is provided, including adaptions of MixUp and CutMix strategy as well as other standard transformations, further improving the detection accuracy.
翻译:深革命神经网络(CNN)最近的进展使人们深入了解了航空安全及其他方面X射线安全检查的自动化。在这里,我们探索了最近两个端到端物体探测CNN结构(Cascade R-CNN和FreeAnchor)的可行性,这些结构是最近两个端到端物体探测CNN结构(Cascade R-CNN和FreeAnchor)的可行性,通过平衡处理时间和图像数据压缩从操作角度对图像数据压缩的影响来进行违禁物品探测。总体而言,我们利用一个具有ResNet50骨干的FreeAnchor结构实现了最大程度的探测性能,在使用OPIXray和Sixray基准数据集方面获得了87.7和85.8的平均值平均精度(MAP),在使用OPIXray和Sixray基准数据集方面表现优于以往的工作。由于参数减少和培训时间减少,FreeAnchor实现了~13英尺(每张3.9米)。此外,我们评估了图像压缩对探测器性能产生的影响。CNNCNM模型对损失压缩反应具有极大的弹性,因此在50JEG压缩水平上仅减少1.;此外,对数据扩充技术进行了彻底评价,包括改进了标准的精准。