Question answering (QA) is a high-level ability of natural language processing. Most extractive ma-chine reading comprehension models focus on factoid questions (e.g., who, when, where) and restrict the output answer as a short and continuous span in the original passage. However, in real-world scenarios, many questions are non-factoid (e.g., how, why) and their answers are organized in the list format that contains multiple non-contiguous spans. Naturally, existing extractive models are by design unable to answer such questions. To address this issue, this paper proposes ListReader, a neural ex-tractive QA model for list-form answer. In addition to learning the alignment between the question and content, we introduce a heterogeneous graph neural network to explicitly capture the associations among candidate segments. Moreover, our model adopts a co-extraction setting that can extract either span- or sentence-level answers, allowing better applicability. Two large-scale datasets of different languages are constructed to support this study. Experimental results show that our model considerably outperforms various strong baselines. Further discussions provide an intuitive understanding of how our model works and where the performance gain comes from.
翻译:回答问题( QA) 是自然语言处理的高度能力。 大部分采掘 Machene阅读理解模型大多侧重于事实问题( 例如, 是谁, 何时, 何地), 并将输出回答限制为原始段落的短长和连续间隔。 然而, 在现实世界的情景中, 许多问题都是非活动类( 例如, 如何, 为何), 以及答案以列表格式组织, 包含多个非毗连的宽度。 自然, 现有的采掘模型在设计上无法回答这类问题。 为了解决这个问题, 本文提出了 ListReader, 一个神经外色动的 QA 模型, 用于列表形式答案。 除了学习问题和内容之间的匹配外, 我们还引入了一个多式的图形神经网络, 以明确捕捉候选部分之间的关联。 此外, 我们的模型采用了共同扩展设置, 可以提取跨度或句级的答案, 允许更好的适用性。 两个大型不同语言的数据集是用来支持这项研究的。 实验结果显示, 我们的模型是如何大大超越了各种强势基线。 进一步的运行。