When sharing sensitive databases with other parties, a database owner aims to (i) have privacy guarantees for its shared database, (ii) have liability guarantees in case of unauthorized sharing of its database by the recipients, and (iii) provide a high quality (utility) database to the recipients. We observe that sharing a database under differential privacy and database fingerprinting are orthogonal objectives. The former aims to inject noise into a database to prevent inference of the original data values, whereas, the latter aims to hide unique marks inside a database to trace malicious parties who leak the data without the authorization. In this paper, we achieve these two objectives simultaneously by proposing a novel differentially-private fingerprinting mechanism for databases. Specifically, we first devise a bit-level random response scheme to achieve differential privacy for sharing entire databases, and then, based on this, we develop an {\epsilon}-differentially private fingerprinting mechanism. Next, we theoretically analyze the relationships among differential privacy guarantee, fingerprint robustness, and database utility by deriving closed form expressions to characterize the privacy-utility coupling and privacy-fingerprint robustness coupling. Furthermore, we propose a sparse vector technique (SVT)-based solution to control the cumulative privacy loss when fingerprinted copies of a database are shared with multiple recipients. We experimentally show that our mechanism achieves stronger fingerprint robustness than the state-of-the-art fingerprinting mechanisms, and higher database utility than the simple composition of database perturbation under differential privacy followed by fingerprinting (e.g., statistical utility of the shared database by the proposed scheme is more than 10x higher than perturbation followed by fingerprinting).


翻译:当与其他当事方分享敏感数据库时,数据库的指纹所有人的目的是:(一) 与其他当事方分享敏感数据库时,数据库管理员的目的是:(一) 其共享数据库有隐私保障;(二) 在接受者未经授权分享数据库时,有责任保障;(三) 向接受者提供高质量的(通用)数据库;我们观察到,在不同的隐私和数据库指纹鉴定下共享数据库是任意的。前者的目的是将噪音注入数据库,以防止原始数据值的推断,而后者的目的是在数据库中隐藏独特的标记,以追踪未经授权泄露数据的恶意各方。在本文中,我们同时通过提出一个新的差异性私人指纹识别机制来实现这两个目标。具体地说,我们首先设计了一个位级随机响应机制,以实现共享整个数据库的隐私差异化,然后在此基础上,我们开发了一个差异性私人指纹鉴定机制。我们从理论上分析差异隐私权保障、指纹稳健和数据库之间的关系,方法是以封闭式形式表达隐私-效用的组合和隐私定位的稳健性遵循的数据库。此外,我们首先设计了一个比共同性数据库的版本,我们提议,在共享性数据库中,一个共享的存储系统,然后是共享性数据库,我们提出一个共享的版本。

0
下载
关闭预览

相关内容

最新《深度学习理论》笔记,68页pdf
专知会员服务
49+阅读 · 2021年2月14日
专知会员服务
41+阅读 · 2021年1月18日
大数据白皮书(2020年), 72页pdf
专知会员服务
58+阅读 · 2020年12月31日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
201+阅读 · 2020年2月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月26日
VIP会员
相关VIP内容
最新《深度学习理论》笔记,68页pdf
专知会员服务
49+阅读 · 2021年2月14日
专知会员服务
41+阅读 · 2021年1月18日
大数据白皮书(2020年), 72页pdf
专知会员服务
58+阅读 · 2020年12月31日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
201+阅读 · 2020年2月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员