We show the following hold, unconditionally unless otherwise stated, relative to a random oracle with probability 1: - There are NP search problems solvable by BQP machines but not BPP machines. - There exist functions that are one-way, and even collision resistant, against classical adversaries but are easily inverted quantumly. Similar separations hold for digital signatures and CPA-secure public key encryption (the latter requiring the assumption of a classically CPA-secure encryption scheme). Interestingly, the separation does not necessarily extend to the case of other cryptographic objects such as PRGs. - There are unconditional publicly verifiable proofs of quantumness with the minimal rounds of interaction: for uniform adversaries, the proofs are non-interactive, whereas for non-uniform adversaries the proofs are two message public coin. - Our results do not appear to contradict the Aaronson-Ambanis conjecture. Assuming this conjecture, there exist publicly verifiable certifiable randomness, again with the minimal rounds of interaction. By replacing the random oracle with a concrete cryptographic hash function such as SHA2, we obtain plausible Minicrypt instantiations of the above results. Previous analogous results all required substantial structure, either in terms of highly structured oracles and/or algebraic assumptions in Cryptomania and beyond.
翻译:除非另有说明,否则,我们无条件地显示以下的搁置,相对于随机的奥秘,概率为1: - 存在BQP机器可溶解的NP搜索问题,但BPP机器不能溶解。 - 存在单向功能,甚至对古老对手有阻击作用,但很容易反弹。 数字签名和CPA安全的公用钥匙加密(后者要求假定传统的CPA安全加密办法)存在类似的分离。 有趣的是,这种分离不一定扩大到诸如PRGs等其他加密对象的情况。 - 有无条件的、可公开核查的量度证据,与最低几轮互动关系:对统一的对手而言,证据是非互动性的,而对于非统一对手而言,证据是两种信息公开的硬币。 我们的结果似乎并不与Aaronson-Ambanis的假设相矛盾。 假设存在可公开核查的随机性,同样是最小的一轮互动。 通过以诸如SHAHA2等具体的加密功能取代随机或触摸器。 我们获得了可靠的小型或高层次的假设, 上面要求的高度的精确的假设。