First Order Locally Orderless Registration (FLOR) is a scale-space framework for image density estimation used for defining image similarity, mainly for Image Registration. The Locally Orderless Registration framework was designed in principle to use zeroth-order information, providing image density estimates over three scales: image scale, intensity scale, and integration scale. We extend it to take first-order information into account and hint at higher-order information. We show how standard similarity measures extend into the framework. We study especially Sum of Squared Differences (SSD) and Normalized Cross-Correlation (NCC) but present the theory of how Normalised Mutual Information (NMI) can be included.
翻译:第一顺序无秩序登记(FLOR)是用于确定图像相似性(主要是图像登记)的图像密度估计的尺度空间框架,主要用于图像登记。无秩序无秩序登记框架原则上旨在使用零顺序信息,提供三个尺度(图像尺度、强度尺度和集成尺度)的图像密度估计。我们扩大这一框架以考虑第一顺序信息,并提示较高顺序信息。我们展示标准相似度措施如何延伸到框架。我们特别研究平方差异和标准化交叉校正(NCC),但提出如何将正常的相互信息(NMI)纳入其中的理论。