We characterize optimal oversight of algorithms in a world where an agent designs a complex prediction function but a principal is limited in the amount of information she can learn about the prediction function. We show that limiting agents to prediction functions that are simple enough to be fully transparent is inefficient as long as the bias induced by misalignment between principal's and agent's preferences is small relative to the uncertainty about the true state of the world. Algorithmic audits can improve welfare, but the gains depend on the design of the audit tools. Tools that focus on minimizing overall information loss, the focus of many post-hoc explainer tools, will generally be inefficient since they focus on explaining the average behavior of the prediction function rather than sources of mis-prediction, which matter for welfare-relevant outcomes. Targeted tools that focus on the source of incentive misalignment, e.g., excess false positives or racial disparities, can provide first-best solutions. We provide empirical support for our theoretical findings using an application in consumer lending.
翻译:在一个代理人设计复杂的预测功能,但本金能了解的关于预测功能的信息数量有限的世界中,我们对算法进行最佳监督。我们表明,只要本金和代理人偏好之间的偏差导致的偏差与世界真实状况的不确定性相比小,那么将代理人限制在简单到完全透明程度的预测功能上是没有效率的。 算法审计可以改善福利,但收益取决于审计工具的设计。 侧重于尽量减少总体信息损失的工具,即许多热量后解释工具的焦点,一般是效率低下的,因为它们侧重于解释预测功能的平均行为,而不是与福利有关的结果的错误预测来源。 侧重于刺激偏差的根源的定向工具,例如,过度的假正数或种族差异,可以提供最佳的解决方案。 我们利用消费者贷款的应用为我们的理论发现提供经验支持。