In recent cyber attacks, credential theft has emerged as one of the primary vectors of gaining entry into the system. Once attacker(s) have a foothold in the system, they use various techniques including token manipulation to elevate the privileges and access protected resources. This makes authentication and token based authorization a critical component for a secure and resilient cyber system. In this paper we discuss the design considerations for such a secure and resilient authentication and authorization framework capable of self-adapting based on the risk scores and trust profiles. We compare this design with the existing standards such as OAuth 2.0, OpenID Connect and SAML 2.0. We then study popular threat models such as STRIDE and PASTA and summarize the resilience of the proposed architecture against common and relevant threat vectors. We call this framework as Resilient Risk based Adaptive Authentication and Authorization (RAD-AA). The proposed framework excessively increases the cost for an adversary to launch and sustain any cyber attack and provides much-needed strength to critical infrastructure. We also discuss the machine learning (ML) approach for the adaptive engine to accurately classify transactions and arrive at risk scores.


翻译:在最近的网络攻击中,身份盗窃已成为进入系统的主要媒介之一。攻击者一旦在系统中站稳脚跟,就会使用各种技术,包括象征性操纵,提升特权和获取受保护资源的机会。这使得认证和象征性授权成为安全和具有复原力的网络系统的关键组成部分。在本文件中,我们讨论了能够根据风险分数和信任情况自我适应的安全和有复原力的认证和授权框架的设计考虑。我们将这一设计与OAuth 2.0、开放ID连接和SAML 2.0等现有标准进行比较。我们接着研究流行的威胁模型,如STRAIDE和PASTA, 总结拟议架构对共同和相关威胁矢量的复原力。我们称这一框架为基于适应风险的适应风险调整和授权(RAD-AA) 。拟议框架过分增加了对手发起和维持任何网络攻击所需的成本,并为关键基础设施提供了非常需要的力量。我们还讨论了调整引擎的机器学习(ML)方法,以准确分类交易和达到风险分数。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月31日
Arxiv
19+阅读 · 2022年10月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员