Hyperspectral imagery is rich in spatial and spectral information. Using 3D-CNN can simultaneously acquire features of spatial and spectral dimensions to facilitate classification of features, but hyperspectral image information spectral dimensional information redundancy. The use of continuous 3D-CNN will result in a high amount of parameters, and the computational power requirements of the device are high, and the training takes too long. This letter designed the Faster selective kernel mechanism network (FSKNet), FSKNet can balance this problem. It designs 3D-CNN and 2D-CNN conversion modules, using 3D-CNN to complete feature extraction while reducing the dimensionality of spatial and spectrum. However, such a model is not lightweight enough. In the converted 2D-CNN, a selective kernel mechanism is proposed, which allows each neuron to adjust the receptive field size based on the two-way input information scale. Under the Selective kernel mechanism, it mainly includes two components, se module and variable convolution. Se acquires channel dimensional attention and variable convolution to obtain spatial dimension deformation information of ground objects. The model is more accurate, faster, and less computationally intensive. FSKNet achieves high accuracy on the IN, UP, Salinas, and Botswana data sets with very small parameters.


翻译:超光谱图像在空间和光谱信息方面丰富多彩。 使用 3D- CNN 可以同时获得空间和光谱层面的特征, 以便于对地貌进行分类, 但超光谱图像信息光度信息冗余。 使用连续的 3D- CNN 将产生大量参数, 设备计算能力要求很高, 培训时间过长。 此字母设计了快速选择性内核机制网络( FSKNet), FSKNet 能够平衡这一问题。 它设计了 3D- CNN 和 2D- CNN 转换模块, 使用 3D- CNN 完成地貌提取, 减少空间和频谱的维谱性。 但是, 这样的模型不够轻度。 在转换的 2D- CNN 中, 提议了一个选择性内核机制, 使每个神经元能够根据双向输入信息尺度调整可容纳的场体积。 在选内核机制下, 它主要包括两个组件, se 模块 和可变共变式的内核转换模块 。 获取了频道 和可变式共变式共振流,, 以获取 以获取空间尺寸 级 级 以获得 空间尺寸 空间尺寸 等,, 以获取 地面物体的 空间尺寸 数据 解解解 。 。 。 该模型,,,,,,,,,,,, 以 以 和 高度,,,,,,,, 高级,, 和,, 和,, 以,, 高级,,,,,, 等,,,,,,,,,, 等,,,,,,,,,,,,,, 等,,,,,,,,,,,,,,,, 和, 和 和 等, 等 等 等 等 等,,

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
31+阅读 · 2021年6月12日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月14日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员