Hyperspectral imagery is rich in spatial and spectral information. Using 3D-CNN can simultaneously acquire features of spatial and spectral dimensions to facilitate classification of features, but hyperspectral image information spectral dimensional information redundancy. The use of continuous 3D-CNN will result in a high amount of parameters, and the computational power requirements of the device are high, and the training takes too long. This letter designed the Faster selective kernel mechanism network (FSKNet), FSKNet can balance this problem. It designs 3D-CNN and 2D-CNN conversion modules, using 3D-CNN to complete feature extraction while reducing the dimensionality of spatial and spectrum. However, such a model is not lightweight enough. In the converted 2D-CNN, a selective kernel mechanism is proposed, which allows each neuron to adjust the receptive field size based on the two-way input information scale. Under the Selective kernel mechanism, it mainly includes two components, se module and variable convolution. Se acquires channel dimensional attention and variable convolution to obtain spatial dimension deformation information of ground objects. The model is more accurate, faster, and less computationally intensive. FSKNet achieves high accuracy on the IN, UP, Salinas, and Botswana data sets with very small parameters.
翻译:超光谱图像在空间和光谱信息方面丰富多彩。 使用 3D- CNN 可以同时获得空间和光谱层面的特征, 以便于对地貌进行分类, 但超光谱图像信息光度信息冗余。 使用连续的 3D- CNN 将产生大量参数, 设备计算能力要求很高, 培训时间过长。 此字母设计了快速选择性内核机制网络( FSKNet), FSKNet 能够平衡这一问题。 它设计了 3D- CNN 和 2D- CNN 转换模块, 使用 3D- CNN 完成地貌提取, 减少空间和频谱的维谱性。 但是, 这样的模型不够轻度。 在转换的 2D- CNN 中, 提议了一个选择性内核机制, 使每个神经元能够根据双向输入信息尺度调整可容纳的场体积。 在选内核机制下, 它主要包括两个组件, se 模块 和可变共变式的内核转换模块 。 获取了频道 和可变式共变式共振流,, 以获取 以获取空间尺寸 级 级 以获得 空间尺寸 空间尺寸 等,, 以获取 地面物体的 空间尺寸 数据 解解解 。 。 。 该模型,,,,,,,,,,,, 以 以 和 高度,,,,,,,, 高级,, 和,, 和,, 以,, 高级,,,,,, 等,,,,,,,,,, 等,,,,,,,,,,,,,, 等,,,,,,,,,,,,,,,, 和, 和 和 等, 等 等 等 等 等,,