The quality and richness of feature maps extracted by convolution neural networks (CNNs) and vision Transformers (ViTs) directly relate to the robust model performance. In medical computer vision, these information-rich features are crucial for detecting rare cases within large datasets. This work presents the "Scopeformer," a novel multi-CNN-ViT model for intracranial hemorrhage classification in computed tomography (CT) images. The Scopeformer architecture is scalable and modular, which allows utilizing various CNN architectures as the backbone with diversified output features and pre-training strategies. We propose effective feature projection methods to reduce redundancies among CNN-generated features and to control the input size of ViTs. Extensive experiments with various Scopeformer models show that the model performance is proportional to the number of convolutional blocks employed in the feature extractor. Using multiple strategies, including diversifying the pre-training paradigms for CNNs, different pre-training datasets, and style transfer techniques, we demonstrate an overall improvement in the model performance at various computational budgets. Later, we propose smaller compute-efficient Scopeformer versions with three different types of input and output ViT configurations. Efficient Scopeformers use four different pre-trained CNN architectures as feature extractors to increase feature richness. Our best Efficient Scopeformer model achieved an accuracy of 96.94\% and a weighted logarithmic loss of 0.083 with an eight times reduction in the number of trainable parameters compared to the base Scopeformer. Another version of the Efficient Scopeformer model further reduced the parameter space by almost 17 times with negligible performance reduction. Hybrid CNNs and ViTs might provide the desired feature richness for developing accurate medical computer vision models


翻译:由 convolution 神经网络(CNNs) 和视觉变异器(ViTs) 提取的地貌图质量和丰富程度与稳健模型性能直接相关。 在医疗计算机愿景中,这些信息丰富的功能对于在大型数据集中发现罕见案例至关重要。 这项工作展示了“ Scopefor”(Scopefer), 一种用于计算断层成像(CT) 图像的新型多CNN- ViT 系统内出血分类的新型多- CNN- ViT 模型。 范围前结构是可扩缩的模块和模块化的, 使CNN的各种结构结构能够用作具有多样化产出特征和训练前战略的骨干框架。 我们提出了有效的地貌预测方法,以减少CNNCM生成功能的冗余范围,并控制ViLT的输入量大小。 模型性能与不同类型SICSM的精度模型的精度相比,我们提出了一种更小的精度的精度缩缩缩缩度, 模型的精度结构可以用来计算。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
CVPR2022论文列表出炉!2067篇论文都在这了!
专知会员服务
53+阅读 · 2022年6月6日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员