The popularity of automated machine learning (AutoML) tools in different domains has increased over the past few years. Machine learning (ML) practitioners use AutoML tools to automate and optimize the process of feature engineering, model training, and hyperparameter optimization and so on. Recent work performed qualitative studies on practitioners' experiences of using AutoML tools and compared different AutoML tools based on their performance and provided features, but none of the existing work studied the practices of using AutoML tools in real-world projects at a large scale. Therefore, we conducted an empirical study to understand how ML practitioners use AutoML tools in their projects. To this end, we examined the top 10 most used AutoML tools and their respective usages in a large number of open-source project repositories hosted on GitHub. The results of our study show 1) which AutoML tools are mostly used by ML practitioners and 2) the characteristics of the repositories that use these AutoML tools. Also, we identified the purpose of using AutoML tools (e.g. model parameter sampling, search space management, model evaluation/error-analysis, Data/ feature transformation, and data labeling) and the stages of the ML pipeline (e.g. feature engineering) where AutoML tools are used. Finally, we report how often AutoML tools are used together in the same source code files. We hope our results can help ML practitioners learn about different AutoML tools and their usages, so that they can pick the right tool for their purposes. Besides, AutoML tool developers can benefit from our findings to gain insight into the usages of their tools and improve their tools to better fit the users' usages and needs.


翻译:过去几年来,不同领域的自动机器学习工具(Automal)的普及程度有所提高。机器学习(ML)实践者使用AutomLML工具,将功能工程、模型培训和超光度优化进程自动化和优化。最近的工作对实践者使用AutomL工具的经验进行了定性研究,并根据这些工具的性能和提供的特点对不同的自动学习工具进行比较,但现有工作都没有研究在现实世界项目中大规模使用AutomLML工具的做法。因此,我们进行了实证研究,以了解ML从业者如何在项目中使用AutomML工具。为此,我们检查了在GitHub主办的大量开源项目储存库中最使用AutML工具的十大AutML工具及其各自的用途。我们发现AutomL工具的特性,例如模型参数取样、搜索空间管理、模型评估/分析、数据/特性转换、数据标签和数据使用这些工具的各自用途。我们使用ML工具的ML工具的版本是如何更好地学习工具。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
124+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
35+阅读 · 2021年8月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
AutoML: A Survey of the State-of-the-Art
Arxiv
70+阅读 · 2019年8月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员