In this paper, we study the problem of distributed estimation with an emphasis on communication-efficiency. The proposed algorithm is based on a windowed maximum a posteriori (MAP) estimation problem, wherein each agent in the network locally computes a Kalman-like filter estimate that approximates the centralized MAP solution. Information sharing among agents is restricted to their neighbors only, with guarantees on overall estimate consistency provided via logarithmic opinion pooling. The problem is efficiently distributed using the alternating direction method of multipliers (ADMM), whose overall communication usage is further reduced by a value of information (VoI) censoring mechanism, wherein agents only transmit their primal-dual iterates when deemed valuable to do so. The proposed censoring mechanism is mission-aware, enabling a globally efficient use of communication resources while guaranteeing possibly different local estimation requirements. To illustrate the validity of the approach we perform simulations in a target tracking scenario.
翻译:在本文中,我们研究了分布估计问题,重点是通信效率。拟议的算法基于一个窗口式的后继(MAP)估计问题,网络中的每个代理商在当地计算了一个类似于Kalman的过滤器估计,接近中央MAP解决方案。代理商之间的信息共享仅限于其邻居,通过对数意见集,保证总体估计的一致性。问题通过乘数交替方向法(ADMM)得到有效分配,其总体通信使用因信息(VoI)审查机制的价值而进一步减少,信息(VoI)审查机制使所有代理商在认为有价值的情况下只能传输其原始和原始的迭代。拟议的审查机制是任务意识机制,能够在全球高效地使用通信资源,同时保证可能不同的当地估计要求。说明我们在目标跟踪情景中进行模拟的方法的有效性。