Hypergraphs capture multi-way relationships in data, and they have consequently seen a number of applications in higher-order network analysis, computer vision, geometry processing, and machine learning. In this paper, we develop the theoretical foundations in studying the space of hypergraphs using ingredients from optimal transport. By enriching a hypergraph with probability measures on its nodes and hyperedges, as well as relational information capturing local and global structure, we obtain a general and robust framework for studying the collection of all hypergraphs. First, we introduce a hypergraph distance based on the co-optimal transport framework of Redko et al. and study its theoretical properties. Second, we formalize common methods for transforming a hypergraph into a graph as maps from the space of hypergraphs to the space of graphs and study their functorial properties and Lipschitz bounds. Finally, we demonstrate the versatility of our Hypergraph Co-Optimal Transport (HyperCOT) framework through various examples.
翻译:测谎仪捕捉了数据中的多路关系, 因此,它们看到了高阶网络分析、 计算机视觉、 几何处理和机器学习中的一些应用。 在本文中, 我们开发了使用最佳运输要素研究高音空间的理论基础 。 通过丰富高射线及其节点和高射线的概率测量, 以及获取地方和全球结构的关联信息, 我们获得了一个用于研究所有高射线集成的一般性和强有力的框架 。 首先, 我们引入了基于Redko 等人共同最佳运输框架的高射线距离, 并研究其理论特性 。 其次, 我们正式确定了将高射线转换成图表的通用方法, 从高射线空间到图形空间, 并研究其真象属性和利普施奇茨界限。 最后, 我们通过各种实例展示了我们超光谱共同运输(HyperCot) 框架的多功能 。