Physiological responses to pain have received increasing attention among researchers for developing an automated pain recognition sensing system. Though less explored, Blood Volume Pulse (BVP) is one of the candidate physiological measures that could help objective pain assessment. In this study, we applied machine learning techniques on BVP signals to device a non-invasive modality for pain sensing. Thirty-two healthy subjects participated in this study. First, we investigated a novel set of time-domain, frequency-domain and nonlinear dynamics features that could potentially be sensitive to pain. These include 24 features from BVP signals and 20 additional features from Inter-beat Intervals (IBIs) derived from the same BVP signals. Utilizing these features, we built machine learning models for detecting the presence of pain and its intensity. We explored different machine learning models, including Logistic Regression, Random Forest, Support Vector Machines, Adaptive Boosting (AdaBoost) and Extreme Gradient Boosting (XGBoost). Among them, we found that the XGBoost offered the best model performance for both pain classification and pain intensity estimation tasks. The ROC-AUC of the XGBoost model to detect low pain, medium pain and high pain with no pain as the baseline were 80.06 %, 85.81 %, and 90.05 % respectively. Moreover, the XGboost classifier distinguished medium pain from high pain with ROC-AUC of 91%. For the multi-class classification among three pain levels, the XGBoost offered the best performance with an average F1-score of 80.03%. Our results suggest that BVP signal together with machine learning algorithms is a promising physiological measurement for automated pain assessment. This work will have a national impact on accurate pain assessment, effective pain management, reducing drug-seeking behavior among patients, and addressing national opioid crisis.


翻译:随着疼痛生理反应日益受到研究人员的关注,开发自动化疼痛识别传感系统的需求日益增长,虽然较少被研究,但血容积脉波(BVP)是一个可能有助于客观评估疼痛的生理测量。在本研究中,我们应用机器学习技术对BVP信号进行分析,提出一种非侵入性的疼痛感知方法。共有32名健康受试者参加研究。首先,我们研究了一种新的时域、频域和非线性动力学特征,这些特征可能对疼痛敏感。这些特征包括24个来自BVP信号的特征和20个来自相同BVP信号衍生的间搏间隔(Inter-beat Intervals, IBIs)的附加特征。利用这些特征,我们建立了机器学习模型,以检测疼痛的存在和强度。我们探索了不同的机器学习模型,包括逻辑回归、随机森林、支持向量机、自适应增强(AdaBoost)和极端梯度增强(XGBoost)。其中,我们发现XGBoost模型在疼痛分类和疼痛强度估计任务中的性能最佳。以无疼痛为基线,XGBoost模型用于检测低疼痛、中等疼痛和高疼痛的ROC-AUC分别为80.06%,85.81%和90.05%。此外,XGBoost分类器在ROC-AUC为91%的情况下区分中等疼痛和高疼痛。对于三个疼痛水平的多类分类,XGBoost模型提供了最佳的性能,平均F1分数为80.03%。我们的结果表明,BVP信号和机器学习算法是自动化疼痛评估的有前途的生理测量。本研究对于精确定位疼痛、有效治疗疼痛、减少患者谋求药物的行为以及应对国家的阿片类药物危机都具有国家级影响。

0
下载
关闭预览

相关内容

xgboost的全称是eXtreme Gradient Boosting,它是Gradient Boosting Machine的一个C++实现,并能够自动利用CPU的多线程进行并行,同时在算法上加以改进提高了精度。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员