It is natural to generalize the $k$-Server problem by allowing each request to specify not only a point $p$, but also a subset $S$ of servers that may serve it. To attack this generalization, we focus on uniform and star metrics. For uniform metrics, the problem is equivalent to a generalization of Paging in which each request specifies not only a page $p$, but also a subset $S$ of cache slots, and is satisfied by having a copy of $p$ in some slot in $S$. We call this problem Slot-Heterogeneous Paging. We parameterize the problem by specifying an arbitrary family ${\cal S} \subseteq 2^{[k]}$, and restricting the sets $S$ to ${\cal S}$. If all request sets are allowed (${\cal S}=2^{[k]}$), the optimal deterministic and randomized competitive ratios are exponentially worse than for standard Paging (${\cal S}=\{[k]\}$). As a function of $|{\cal S}|$ and the cache size $k$, the optimal deterministic ratio is polynomial: at most $O(k^2|{\cal S}|)$ and at least $\Omega(\sqrt{|{\cal S}|})$. For any laminar family ${\cal S}$ of height $h$, the optimal ratios are $O(hk)$ (deterministic) and $O(h^2\log k)$ (randomized). The special case that we call All-or-One Paging extends standard Paging by allowing each request to specify a specific slot to put the requested page in. For All-or-One Paging the optimal competitive ratios are $\Theta(k)$ (deterministic) and $\Theta(\log k)$ (randomized), while the offline problem is NP-hard. We extend the deterministic upper bound to the weighted variant of All-Or-One Paging (a generalization of standard Weighted Paging), showing that it is also $\Theta(k)$.
翻译:普通化 $k$ 服务 问题是自然而然的, 允许每次请求不仅指定一个点 $, 并且指定一个可能为其服务的服务器的子 $S 。 要突现这个一般化, 我们的焦点是制服和恒星量 。 对于统一度, 问题相当于调制的概括化, 每份请求中不仅指定一页美元, 而且还指定一个缓存空位的子 $, 并且满足于在某个位( 美元) 上有一个 $( 美元) 的复制件 。 我们称之为问题 Slot- 超异质性调 。 我们通过指定一个任意的家族 $( S)\ subseteqseteqeq.2 [k] 。 如果所有请求都允许使用 $scal S%2 [k], 最优化的确定性竞争比率比标准平面( S%) 和最低的 美元( 美元) 硬度( 美元) 直径( 直径( 美元) 直径) 直径( S) 直径直径直达。 直径( 直径( 直径) 直达( 美元) 直达( 平方) 平方( 平方) 平方( 平方( 平方) 平方( 平方) 平方( 美元) 平方( 美元) 平面) 平面) 平面) 。