In this article, we present a collection of radio map datasets in dense urban setting, which we generated and made publicly available. The datasets include simulated pathloss/received signal strength (RSS) and time of arrival (ToA) radio maps over a large collection of realistic dense urban setting in real city maps. The two main applications of the presented dataset are 1) learning methods that predict the pathloss from input city maps (namely, deep learning-based simulations), and, 2) wireless localization. The fact that the RSS and ToA maps are computed by the same simulations over the same city maps allows for a fair comparison of the RSS and ToA-based localization methods.
翻译:在本篇文章中,我们展示了密集城市环境中的无线电地图数据集,我们制作并公开提供这些数据集,其中包括模拟路由损失/接收信号强度(RSS)和到达时间(ToA)无线电地图,这些地图收集了大量实际城市地图中现实密集的城市环境,所展示的数据集的两个主要用途是:(1) 预测输入城市地图(即深层学习模拟)的路径损失的学习方法;(2) 无线本地化;RSS和ToA地图是用同一城市地图的同一种模拟来计算,这样就可以对RSS和ToA的本地化方法进行公平的比较。