We introduce a new differential privacy (DP) accountant called the saddle-point accountant (SPA). SPA approximates privacy guarantees for the composition of DP mechanisms in an accurate and fast manner. Our approach is inspired by the saddle-point method -- a ubiquitous numerical technique in statistics. We prove rigorous performance guarantees by deriving upper and lower bounds for the approximation error offered by SPA. The crux of SPA is a combination of large-deviation methods with central limit theorems, which we derive via exponentially tilting the privacy loss random variables corresponding to the DP mechanisms. One key advantage of SPA is that it runs in constant time for the $n$-fold composition of a privacy mechanism. Numerical experiments demonstrate that SPA achieves comparable accuracy to state-of-the-art accounting methods with a faster runtime.
翻译:我们引入了新的差异隐私会计师(DP),称为“马鞍点会计(SPA) ” 。 SPA以准确和快速的方式接近对DP机制构成的隐私保障。 我们的方法受到马鞍点方法的启发 -- -- 统计中无处不在的数值技术。 我们通过得出SPA近似错误的上限和下限来证明严格的绩效保障。 SPA的柱石是大型降价方法与中央限值理论的结合,我们通过快速倾斜与DP机制相对应的隐私损失随机变量而得出。 SPA的一个主要优势是,它会持续地运行一个隐私机制的美元倍构成。 数字实验表明,SPA的精确度与最先进的会计方法相当,运行时间更快。