In quantum computing, the variational quantum algorithms (VQAs) are well suited for finding optimal combinations of things in specific applications ranging from chemistry all the way to finance. The training of VQAs with gradient descent optimization algorithm has shown a good convergence. At an early stage, the simulation of variational quantum circuits on noisy intermediate-scale quantum (NISQ) devices suffers from noisy outputs. Just like classical deep learning, it also suffers from vanishing gradient problems. It is a realistic goal to study the topology of loss landscape, to visualize the curvature information and trainability of these circuits in the existence of vanishing gradients. In this paper, we calculated the Hessian and visualized the loss landscape of variational quantum classifiers at different points in parameter space. The curvature information of variational quantum classifiers (VQC) is interpreted and the loss function's convergence is shown. It helps us better understand the behavior of variational quantum circuits to tackle optimization problems efficiently. We investigated the variational quantum classifiers via Hessian on quantum computers, started with a simple 4-bit parity problem to gain insight into the practical behavior of Hessian, then thoroughly analyzed the behavior of Hessian's eigenvalues on training the variational quantum classifier for the Diabetes dataset.
翻译:在量子计算中,变量量子算法(VQAs)非常适合寻找从化学到金融的化学到化学等各种具体应用中事物的最佳组合。对VQAs进行梯度下降优化算法的培训显示了一个良好的趋同。在早期阶段,对噪音中尺度量子量子(NISQ)设备的变异量电路的模拟存在噪音产出。就像古老的深层次学习一样,它也存在渐渐渐消失的梯度问题。这是一个现实的目标,可以研究损失面貌的地形学,直观地分析这些电路在消失梯度存在时的曲线信息和可训练能力。在本文中,我们计算了赫森和视觉化了参数空间不同点变异量量子分级器的损耗情况。对变量量子分级器(VQC)的曲度信息进行了解释,并展示了损失函数的趋同性。这有助于我们更好地了解变异性量子量子电路的动作,以便高效地解决优化问题。我们研究了在量级计算机上通过赫西亚的变异性电路,从简单的四位对等行为开始,并开始,以便彻底地分析他对等度数据定的变度行为。