Crucial to the success of training a depth-based 3D hand pose estimator (HPE) is the availability of comprehensive datasets covering diverse camera perspectives, shapes, and pose variations. However, collecting such annotated datasets is challenging. We propose to complete existing databases by generating new database entries. The key idea is to synthesize data in the skeleton space (instead of doing so in the depth-map space) which enables an easy and intuitive way of manipulating data entries. Since the skeleton entries generated in this way do not have the corresponding depth map entries, we exploit them by training a separate hand pose generator (HPG) which synthesizes the depth map from the skeleton entries. By training the HPG and HPE in a single unified optimization framework enforcing that 1) the HPE agrees with the paired depth and skeleton entries; and 2) the HPG-HPE combination satisfies the cyclic consistency (both the input and the output of HPG-HPE are skeletons) observed via the newly generated unpaired skeletons, our algorithm constructs a HPE which is robust to variations that go beyond the coverage of the existing database. Our training algorithm adopts the generative adversarial networks (GAN) training process. As a by-product, we obtain a hand pose discriminator (HPD) that is capable of picking out realistic hand poses. Our algorithm exploits this capability to refine the initial skeleton estimates in testing, further improving the accuracy. We test our algorithm on four challenging benchmark datasets (ICVL, MSRA, NYU and Big Hand 2.2M datasets) and demonstrate that our approach outperforms or is on par with state-of-the-art methods quantitatively and qualitatively.


翻译:由于以这种方式生成的骨架没有相应的深度地图条目,我们通过培训一个单独的手动配置器(HPG)来利用这些数据集,将深度地图与骨架条目合成起来。然而,收集这种附加说明的数据集具有挑战性。我们提议通过创建新的数据库条目来完成现有的数据库数据库。关键的想法是将骨架空间中的数据(而不是在深度地图空间中这样做)综合起来,这样就可以以简便和直观的方式操控数据条目。由于以这种方式生成的骨架条目没有相应的深度地图条目,我们通过培训一个单独的手动配置器(HPG)来利用这些数据集,将深度地图与骨架条目合并起来。通过一个单一的统一优化框架来训练HPG和HPE,使HP与配对的深度和骨架条目合并;以及2 HPG-HPE组合能够满足周期性数据的一致性(包括输入量和进一步输出为骨架),我们通过新生成的不精确的骨架,我们的算方法构建一个HPE, 将一个坚固的HPE构建到更能的深度地图图图,我们现有的基因测试数据库中,我们用一个能的基因测试工具来展示模型数据库。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年5月24日
VIP会员
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员