This paper characterizes the inherent power of evolutionary algorithms. This power depends on the computational properties of the genetic encoding. With some encodings, two parents recombined with a simple crossover operator can sample from an arbitrary distribution of child phenotypes. Such encodings are termed \emph{expressive encodings} in this paper. Universal function approximators, including popular evolutionary substrates of genetic programming and neural networks, can be used to construct expressive encodings. Remarkably, this approach need not be applied only to domains where the phenotype is a function: Expressivity can be achieved even when optimizing static structures, such as binary vectors. Such simpler settings make it possible to characterize expressive encodings theoretically: Across a variety of test problems, expressive encodings are shown to achieve up to super-exponential convergence speed-ups over the standard direct encoding. The conclusion is that, across evolutionary computation areas as diverse as genetic programming, neuroevolution, genetic algorithms, and theory, expressive encodings can be a key to understanding and realizing the full power of evolution.
翻译:本文描述进化算法的固有力量。 此权力取决于遗传编码的计算特性。 在某些编码中, 双亲可以与简单的交叉操作器进行重新组合, 从任意分布的子苯型类型中进行抽样。 在本文中, 这些编码被称为 \ emph{ 表达式编码 。 通用功能相近者, 包括基因编程和神经网络的流行进化子串联, 可以用来构建表达式编码。 值得注意的是, 这种方法不必仅仅适用于 phenoty 是一个函数的领域 : 即使在优化静态结构( 如二进制矢量) 时, 表达式编码也可以实现。 这种更简单的设置使得可以从理论上描述表达式编码: 跨越各种测试问题, 表达式编码可以显示在标准直接编码上达到超膨胀的趋同速度。 结论是, 在基因编程、 神经进化、 遗传算算法和理论等多种进化计算领域, 表达式编码可以成为理解和实现演进力的关键 。