Conditional density estimation is the task of estimating the probability of an event, conditioned on some inputs. A neural network can be used to compute the output distribution explicitly. For such a task, there are many ways to represent a continuous-domain distribution using the output of a neural network, but each comes with its own limitations for what distributions it can accurately render. If the family of functions is too restrictive, it will not be appropriate for many datasets. In this paper, we demonstrate the benefits of modeling free-form distributions using deconvolution. It has the advantage of being flexible, but also takes advantage of the topological smoothness offered by the deconvolution layers. We compare our method to a number of other density-estimation approaches, and show that our Deconvolutional Density Network (DDN) outperforms the competing methods on many artificial and real tasks, without committing to a restrictive parametric model.
翻译:有条件密度估计是估计事件概率的任务,以某些投入为条件。可以使用神经网络来明确计算输出分布。对于这一任务,有许多方法可以代表使用神经网络输出的连续域分布,但每种方法都有其自身的局限性。如果功能组合限制过强,则对许多数据集不合适。在本文中,我们展示了利用变异来模拟自由成型分布的模型的好处。它具有灵活性的优势,但也利用了变异层提供的地形平滑性。我们将我们的方法与其他密度估计方法进行比较,并表明我们的进化密度密度密度网(DDN)超越了许多人造和实际任务的竞争方法,而没有承诺采用限制性的参数模型。