Mixture Density Networks (MDNs) can be used to generate probability density functions of model parameters $\boldsymbol{\theta}$ given a set of observables $\mathbf{x}$. In some applications, training data are available only for discrete values of a continuous parameter $\boldsymbol{\theta}$. In such situations a number of performance-limiting issues arise which can result in biased estimates. We demonstrate the usage of MDNs for parameter estimation, discuss the origins of the biases, and propose a corrective method for each issue.


翻译:混合密度网络(MDNs)可以用来产生模型参数的概率密度函数$\boldsymbol_theta}$$(boldsymbol_theta}$),如果有一套可观测值$\mathbf{x}$(美元)的话。在某些应用中,培训数据只能用于连续参数的离散值$\boldsymbol_theta}$(boldsymol_theta}$(美元)。在这种情况下,会出现一些可导致偏差估计的性能限制问题。我们证明在参数估计中使用MDNs,讨论偏差的起源,并为每个问题提出纠正方法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
已删除
将门创投
7+阅读 · 2020年3月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员