We present a conceptually simple, flexible and effective framework for weight generating networks. Our approach is general that unifies two current distinct and extremely effective SENet and CondConv into the same framework on weight space. The method, called WeightNet, generalizes the two methods by simply adding one more grouped fully-connected layer to the attention activation layer. We use the WeightNet, composed entirely of (grouped) fully-connected layers, to directly output the convolutional weight. WeightNet is easy and memory-conserving to train, on the kernel space instead of the feature space. Because of the flexibility, our method outperforms existing approaches on both ImageNet and COCO detection tasks, achieving better Accuracy-FLOPs and Accuracy-Parameter trade-offs. The framework on the flexible weight space has the potential to further improve the performance. Code is available at https://github.com/megvii-model/WeightNet.


翻译:我们为重力生成网络提出了一个简单、灵活和有效的概念框架。我们的方法是一般性的,将目前两个独特和极为有效的Senet和CondConv统一成关于重量空间的同一框架。称为WeightNet的方法将两种方法笼统化,简单地在引力启动层增加一个又一个完全相连的分组层。我们使用完全由(组合的)完全相连的层组成的WeightNet直接输出卷发重量。WeightNet很容易,记忆保存在内核空间而不是特征空间上进行训练。由于灵活性,我们的方法优于图像网络和COCO探测任务的现有方法,实现了更好的精度-FLOPs和Acureacy-Parater交换。关于灵活重量空间的框架有可能进一步改进性能。代码可在https://github.com/megving-model/WeightNet上查阅。

1
下载
关闭预览

相关内容

还在修改博士论文?这份《博士论文写作技巧》为你指南
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
已删除
将门创投
7+阅读 · 2020年3月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
17+阅读 · 2019年3月28日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员