Searching for clues, gathering evidence, and reviewing case files are all techniques used by criminal investigators to draw sound conclusions and avoid wrongful convictions. Similarly, in software engineering (SE) research, we can develop sound methodologies and mitigate threats to validity by basing study design decisions on evidence. Echoing a recent call for the empirical evaluation of design decisions in program comprehension experiments, we conducted a 2-phases study consisting of systematic literature searches, snowballing, and thematic synthesis. We found out (1) which validity threat categories are most often discussed in primary studies of code comprehension, and we collected evidence to build (2) the evidence profiles for the three most commonly reported threats to validity. We discovered that few mentions of validity threats in primary studies (31 of 409) included a reference to supporting evidence. For the three most commonly mentioned threats, namely the influence of programming experience, program length, and the selected comprehension measures, almost all cited studies (17 of 18) did not meet our criteria for evidence. We show that for many threats to validity that are currently assumed to be influential across all studies, their actual impact may depend on the design and context of each specific study. Researchers should discuss threats to validity within the context of their particular study and support their discussions with evidence. The present paper can be one resource for evidence, and we call for more meta-studies of this type to be conducted, which will then inform design decisions in primary studies. Further, although we have applied our methodology in the context of program comprehension, our approach can also be used in other SE research areas to enable evidence-based experiment design decisions and meaningful discussions of threats to validity.


翻译:同样,在软件工程研究(SE)研究中,我们可以制定健全的方法,并通过根据证据作出研究设计决定,减轻对有效性的威胁。我们响应最近关于对方案理解实验的设计决定进行实证评估的呼吁,进行了由系统文献搜索、雪球学和专题综合组成的两阶段研究。我们发现:(1) 正确性威胁类别最经常在代码理解初级研究中讨论,我们收集的证据是为了建立(2) 三种最常见的报告对有效性的威胁的证据概况。我们发现,在初级研究(409年的31项研究)中,很少提到有效性威胁,而是提到证据。对于三个最常见的威胁,即方案编制经验、程序长度和选定的理解措施的影响,几乎所有引用的研究(18年的17项)都不符合我们的证据标准。我们发现(1) 目前假定在所有主要研究中都具有影响力的对有效性威胁的许多威胁,其实际影响可能取决于每项具体研究的设计与背景。研究(409年的31项研究)中,很少有提及有效性威胁的证据。关于有效性威胁的证据,对于其特定设计设计,我们所使用的证据类型研究领域,我们可以用来作为证据。

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2021年10月11日
A Survey on Data Augmentation for Text Classification
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员