In this paper, a deep convolutional neural network-based symbol detection and demodulation is proposed for generalized frequency division multiplexing with index modulation (GFDM-IM) scheme in order to improve the error performance of the system. The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN). The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance. This two-stage approach prevents the getting stuck of neural network in a saddle point and enables IM blocks processing independently. It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase. We conclude that non-orthogonal waveforms combined with IM schemes with the help of deep learning is a promising physical layer (PHY) scheme for future wireless networks
翻译:在本文中,为改进系统误差性能,建议对具有指数调制(GFDM-IM)性能的普遍频分多重调制(GMDM-IM)方案进行深层神经网络符号探测和降压,以便改进系统的误差性能。拟议方法首先通过使用零力推进(ZF)探测器处理接收的信号,然后使用由脉冲神经网络(CNN)组成的神经网络,然后是完全连通的神经网络(FCNNN)。FCNN部分只使用两个完全连通的层,这些层可以调整,以便在复杂性和位误差率(BER)性能之间实现平衡。这一两阶段方法防止神经网络被困在一个支撑点上,使IM区块能够独立处理。已经证明,拟议的深脉冲神经网络检测和降压计划比ZF探测器(FNNNNN)更能产生更好的性能,同时增加合理的复杂性。我们的结论是,与IM计划结合的无骨波形组合和深学习计划对于未来无线网络来说是一种有希望的物理层(PHY)计划。