This paper tackles efficient methods for Bayesian inverse problems with priors based on Whittle--Mat\'ern Gaussian random fields. The Whittle--Mat\'ern prior is characterized by a mean function and a covariance operator that is taken as a negative power of an elliptic differential operator. This approach is flexible in that it can incorporate a wide range of prior information including non-stationary effects, but it is currently computationally advantageous only for integer values of the exponent. In this paper, we derive an efficient method for handling all admissible noninteger values of the exponent. The method first discretizes the covariance operator using finite elements and quadrature, and uses preconditioned Krylov subspace solvers for shifted linear systems to efficiently apply the resulting covariance matrix to a vector. This approach can be used for generating samples from the distribution in two different ways: by solving a stochastic partial differential equation, and by using a truncated Karhunen-Lo\`eve expansion. We show how to incorporate this prior representation into the infinite-dimensional Bayesian formulation, and show how to efficiently compute the maximum a posteriori estimate, and approximate the posterior variance. Although the focus of this paper is on Bayesian inverse problems, the techniques developed here are applicable to solving systems with fractional Laplacians and Gaussian random fields. Numerical experiments demonstrate the performance and scalability of the solvers and their applicability to model and real-data inverse problems in tomography and a time-dependent heat equation.
翻译:本文针对巴伊西亚人以 Whittle- Mat\'ern Gausian 随机字段为基础, 处理前期问题的高效方法。 Whittle- Mat\' Ern 上前期使用一种中值函数和共变操作器, 后者被作为椭圆差操作器的负力。 这种方法具有灵活性, 它可以包含广泛的先前信息, 包括非静态效应, 但目前它只对Expent 的整数值具有计算优势 。 在本文中, 我们获得一种高效处理所有可接受的非内值的超值的有效方法。 这种方法首先使用有限的元素和等宽度, 将变异性操作操作器分解开来, 并使用一个预设的 Krylov 子空间解算器, 将由此产生的共变异性矩阵有效地应用于向矢量。 这种方法可以用两种不同的方式生成分布的样本: 解决偏差部分偏差的公式, 以及使用一个可调的Karhuncen- Love- Love 扩展 扩展 方法 。 我们展示了将这个前的变性数据操作操作操作操作操作器, 将这个可调的变数操作器的变数, 并显示为平面平面平面平面的平面的平面的平比度, 。 。 的平面的平面平面的平面的平面的平面的平面的平面图的度和度和度的平面的度的度的度是显示的平面的度, 。