We present an efficient Neural Neighborhood Search (N2S) approach for pickup and delivery problems (PDPs). In specific, we design a powerful Synthesis Attention that allows the vanilla self-attention to synthesize various types of features regarding a route solution. We also exploit two customized decoders that automatically learn to perform removal and reinsertion of a pickup-delivery node pair to tackle the precedence constraint. Additionally, a diversity enhancement scheme is leveraged to further ameliorate the performance. Our N2S is generic, and extensive experiments on two canonical PDP variants show that it can produce state-of-the-art results among existing neural methods. Moreover, it even outstrips the well-known LKH3 solver on the more constrained PDP variant. Our implementation for N2S is available online.
翻译:我们提出了一个高效的神经邻里搜索(N2S)办法来应对接货和交付问题。具体地说,我们设计了一个强大的合成关注(PDPs ), 使香草自我关注能够合成有关路线解决方案的各种特征。 我们还开发了两个定制的解码器,这些解码器可以自动学会清除和重新安插一个小货运节点对方,以解决优先限制问题。此外,还利用了多样性增强计划来进一步提高性能。我们的N2S是通用的,对两种卡通型PDP变异器的广泛实验表明,它可以在现有的神经方法中产生最先进的结果。此外,它甚至超越了在更受限制的PDP变式上众所周知的LKH3解码器。我们用于N2S的应用程序可以在网上获得。