Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Limited research efforts have explored a higher level of optimization by making the quantum circuit resilient to noise. We propose and experimentally implement QuantumNAS, the first comprehensive framework for noise-adaptive co-search of variational circuit and qubit mapping. Variational quantum circuits are a promising approach for constructing quantum neural networks for machine learning and variational ansatzes for quantum simulation. However, finding the best variational circuit and its optimal parameters is challenging in a high-dimensional Hilbert space. We propose to decouple the parameter training and circuit search by introducing a novel gate-sharing SuperCircuit. The SuperCircuit is trained by sampling and updating the SubCircuits in it and provides an accurate estimation of SubCircuit performance trained from scratch. Then we perform an evolutionary co-search of SubCircuit and its qubit mapping. The SubCircuit performance is estimated with parameters inherited from SuperCircuit and simulated with real device noise models. Finally, we perform iterative gate pruning and finetuning to further remove the redundant gates in a fine-grained manner. Extensively evaluated with 12 QML and VQE benchmarks on 10 quantum computers, QuantumNAS significantly outperforms noise-unaware search, human and random baselines. For QML tasks, QuantumNAS is the first to demonstrate over 95% 2-class, 85% 4-class, and 32% 10-class classification accuracy on real quantum computers. It also achieves the lowest eigenvalue for VQE tasks on H2, H2O, LiH, CH4, BeH2 compared with UCCSD baselines. We also open-source QuantumEngine (https://github.com/mit-han-lab/pytorch-quantum) for fast training of parameterized quantum circuits to facilitate future research.
翻译:量子脉冲是Noisy 中级量子2 (NISQ) 计算机的关键挑战。 有限的研究努力探索了更高的优化水平, 使量子电路适应噪音。 我们提议并实验实施量子电路(QuantumNAS), 这是第一个用于对变异电路和qubit绘图进行噪声适应性共同搜索的综合框架。 挥发量量子电路是建造用于机器学习的量子神经网络和用于量子模拟的变异器。 然而, 在一个高度的Hilbert空间中, 找到最佳变异电路及其最佳参数是具有挑战性的。 我们提议通过引入新型的共享门级超级环球游戏来取消参数培训和电路搜索。 超音量量量量量量量量量子电路路路段( QQQQ), 超量量电路机床(HQQQQ), 对子机床(HML) 基线进行测试,然后对子机床(Vcirutitialut) 进行进化研究, 4 和模拟模拟模拟。 最后测试, 10MQQQQ 底基(O) 基线(x) 底基) 数据路路路路路路路基, 进行大幅测试,, 进行超量数据路路基, 以进一步清除。