Variational quantum circuits are used in quantum machine learning and variational quantum simulation tasks. Designing good variational circuits or predicting how well they perform for given learning or optimization tasks is still unclear. Here we discuss these problems, analyzing variational quantum circuits using the theory of neural tangent kernels. We define quantum neural tangent kernels, and derive dynamical equations for their associated loss function in optimization and learning tasks. We analytically solve the dynamics in the frozen limit, or lazy training regime, where variational angles change slowly and a linear perturbation is good enough. We extend the analysis to a dynamical setting, including quadratic corrections in the variational angles. We then consider hybrid quantum-classical architecture and define a large width limit for hybrid kernels, showing that a hybrid quantum-classical neural network can be approximately Gaussian. The results presented here show limits for which analytical understandings of the training dynamics for variational quantum circuits, used for quantum machine learning and optimization problems, are possible. These analytical results are supported by numerical simulations of quantum machine learning experiments.
翻译:量子机器学习和量子变化模拟任务中使用了变化量子电路。 设计好的变异电路或预测它们对于特定学习或优化任务的表现如何仍然不清楚。 我们在这里讨论这些问题, 利用神经相近内核理论分析变异量子电路。 我们定义了量子神经相近内核, 并在优化和学习任务中为其相关的损失函数得出动态方程式。 我们在这里分析解了冻结极限或懒惰训练制度中的动态, 在那里, 变形角度变化缓慢, 线性扰动足够好。 我们把分析扩大到动态环境, 包括变形角度的二次校正。 我们然后考虑混合量子结构, 并为混合内核内核设定一个大宽度限制, 表明混合量子级神经网络在优化和学习任务中可以大致高分级。 我们在这里介绍的结果显示, 可用于量子机学习和优化问题的变量量子电路培训动态分析理解是可能的。 这些分析结果得到量子机器实验数字模拟的支持。