In a joint work with D. Bennequin, we suggested that the (negative) minima of the 3-way multivariate mutual information correspond to Borromean links, paving the way for providing probabilistic analogs of linking numbers. This short note generalizes the correspondence of the minima of k multivariate interaction information with k Brunnian links in the binary variable case. Following Jakulin and Bratsko, we also note that the negativity of the associated K-L divergence of the joint probability law with its Kirkwood approximation implies their contextuality in the sens of Abramsky. Those negative k-interactions links, that cannot be captured in lower dimensions then k, provide a straightforward definition of collective emergence in complex k-body interacting systems or dataset.
翻译:在与D. Bennequin的共同努力中,我们建议,三维多变量相互信息的(负)微型与Borrobine链接相对应,为提供链接数字的概率模拟铺平了道路。这个简短的注释概括了k多变量互动信息与k Brunnian链接在二进制变数案例中的对应。在Jakulin和Bratsko之后,我们还注意到,与Kirkwood近似法相关的K-L差异的消极性意味着其在Abramsky传感器中的上下文质量。这些负面的 k-互动联系在较低维度上无法捕捉到, k 提供了在复杂的 k- 身体互动系统或数据集中集体出现的直截定义。