A free-floating bike-sharing system (FFBSS) is a dockless rental system where an individual can borrow a bike and returns it everywhere, within the service area. To improve the rental service, available bikes should be distributed over the entire service area: a customer leaving from any position is then more likely to find a near bike and then to use the service. Moreover, spreading bikes among the entire service area increases urban spatial equity since the benefits of FFBSS are not a prerogative of just a few zones. For guaranteeing such distribution, the FFBSS operator can use vans to manually relocate bikes, but it incurs high economic and environmental costs. We propose a novel approach that exploits the existing bike flows generated by customers to distribute bikes. More specifically, by envisioning the problem as an Influence Maximization problem, we show that it is possible to position batches of bikes on a small number of zones, and then the daily use of FFBSS will efficiently spread these bikes on a large area. We show that detecting these areas is NP-complete, but there exists a simple and efficient $1-1/e$ approximation algorithm; our approach is then evaluated on a dataset of rides from the free-floating bike-sharing system of the city of Padova.
翻译:自由漂浮的自行车共享系统(FFBSS)是一个没有码头的租赁系统,个人可以在服务区内的任何地方借用自行车,然后返回。为了改善租赁服务,现有的自行车应该分布在整个服务区:离开任何职位的客户更有可能找到一辆接近的自行车,然后使用这一服务。此外,在整个服务区传播自行车会提高城市空间公平,因为FFBSS的好处不仅仅是少数几个区的特权。为了保证这种分配,FFBSS运营商可以使用面包车手动移动自行车,但会产生很高的经济和环境成本。我们提出了一个新颖的办法,利用客户现有的自行车流动来分发自行车。更具体地说,通过将问题设想成影响最大化问题,我们表明有可能将一批自行车放置在少数地区,然后每天使用FFBSS将有效地将这些自行车分散在大地区。我们表明,为了保证这种分配,FFBSS运营商可以使用面包车来手动移动自行车,但是这需要很高的经济和环境成本。我们提出了一个新颖的新办法,即利用客户现有的自行车流量来分发自行车。更具体地说,通过将这一问题视为影响最大化的问题,我们可以把一批自行车放在少数地区,然后,而每天使用FBSS将这些自行车用于在大地区。我们用来评估了一种免费的电路压数据。