Online dimension reduction is a common method for high-dimensional streaming data processing. Online principal component analysis, online sliced inverse regression, online kernel principal component analysis and other methods have been studied in depth, but as far as we know, online supervised nonlinear dimension reduction methods have not been fully studied. In this article, an online kernel sliced inverse regression method is proposed. By introducing the approximate linear dependence condition and dictionary variable sets, we address the problem of increasing variable dimensions with the sample size in the online kernel sliced inverse regression method, and propose a reduced-order method for updating variables online. We then transform the problem into an online generalized eigen-decomposition problem, and use the stochastic optimization method to update the centered dimension reduction directions. Simulations and the real data analysis show that our method can achieve close performance to batch processing kernel sliced inverse regression.
翻译:在线维度减少是高维流数据处理的常见方法。 在线主元件分析、 在线切片反向回归、 在线内核主元件分析和其他方法已经进行了深入研究, 但据我们所知, 在线监管的非线性维度减少方法尚未得到充分研究 。 在本条中, 提出了一个在线内核切片反向回归法。 通过引入近似线性依赖条件和字典变量组, 我们解决了在在线内核切片反向回归法中样本体积增加变量的问题, 并提出了在线更新变量的减序方法 。 我们随后将问题转换成在线通用的eigen分解问题, 并使用随机优化方法更新中度减少方向 。 模拟和真实数据分析显示, 我们的方法可以接近分批处理被反向回归的内核处理功能 。