项目名称: 层间距可控的高离子迁移效率石墨烯基薄膜电极储能性能研究

项目编号: No.21506130

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 有机化学

项目作者: 吉俊懿

作者单位: 四川大学

项目金额: 21万元

中文摘要: 高体积比容量新型电极材料的开发对超级电容器的小型化、高容量化具有重要的意义。当前电极材料多为疏松三维结构,电极内部空间浪费严重,导致电极密度低,影响电极体积比容量。通过控制电极材料内部的微孔结构,构造电解液离子迁移通道,同时保留较高的电极密度,是制备高密度、高体积比容量电极的关键。基于此,本项目提出利用聚苯胺纳米锥插层石墨烯薄膜、构建离子迁移通道、制备高体积比容量致密电极薄膜的研究思路。通过研究聚苯胺在石墨烯表面的可控聚合,阐明石墨烯片层表面聚苯胺原位生长密度及高度的调变规律;通过考察聚苯胺/石墨烯复合材料的自组装行为,研究聚苯胺密度、高度及成膜条件对复合薄膜层间距与层间微纳结构的调控机制;通过研究聚苯胺/石墨烯复合薄膜内部微纳结构与离子迁移效率的调变关系,探明层状薄膜材料内部离子迁移强化机制。研究结果将为设计和制备高体积比容量、高密度新型复合薄膜电极奠定理论基础。

中文关键词: 石墨烯;聚苯胺;层间距可控;高离子迁移效率;超级电容器

英文摘要: The development of advanced electrodes with high volumetric capacitance is essential for the miniaturization of next-generation supercapacitors. Current electrode materials are mainly constructed by porous structure, the abundant pores inside the electrode can seriously influence the electrode density, thus result in low volumetric capacitance of the electrodes. It is essential to precisely control the structure and pore distribution inside the electrode to form electrolyte ions diffusion pathway, while remain a relatively high density of the electrode. Here, we expect to fabricate a high density and high volumetric capacitance graphene-based membrane electrode, which utilize the polyaniline in situ grown on graphene sheets as a spacer to form the ions diffusion path. The influence of the polyaniline growth density and height on graphene sheets will studied by controlling the experimental parameters during in situ polymerization process. The porous structure formed inside the graphene/polyaniline hybrid membrane will adjusted by the graphene sheets with different polyaniline structure. The ion diffusion rate inside the graphene/polyaniline hybrid membrane as well as its relationship with the porous structure of the membrane will also be studied. This study will pave a way for the advanced high volumetric capacitance, high density graphene-based supercapacitor electrodes.

英文关键词: graphene;polyaniline;controllable interlayer spacing;high ion diffusion rate;supercapacitor electrodes

成为VIP会员查看完整内容
0

相关内容

【NeurIPS2021】由相似性迁移的弱样本细粒度分类
专知会员服务
21+阅读 · 2021年11月11日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
56+阅读 · 2021年6月30日
专知会员服务
18+阅读 · 2021年5月23日
专知会员服务
40+阅读 · 2021年5月12日
​【CVPR 2021】半监督视频目标分割新算法,实现SOTA性能
专知会员服务
13+阅读 · 2021年4月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
27+阅读 · 2021年11月11日
Arxiv
20+阅读 · 2021年9月21日
小贴士
相关主题
相关VIP内容
【NeurIPS2021】由相似性迁移的弱样本细粒度分类
专知会员服务
21+阅读 · 2021年11月11日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
专知会员服务
56+阅读 · 2021年6月30日
专知会员服务
18+阅读 · 2021年5月23日
专知会员服务
40+阅读 · 2021年5月12日
​【CVPR 2021】半监督视频目标分割新算法,实现SOTA性能
专知会员服务
13+阅读 · 2021年4月26日
微信扫码咨询专知VIP会员