We present an algorithm for finding optimal paths for multiple stochastic agents in a graph to reach their destinations with a user-specified maximum pairwise collision probability. Our algorithm, called STT-CBS, uses Conflict-Based Search (CBS) with a stochastic travel time (STT) model for the agents. We model robot travel time along each edge of the graph by independent gamma-distributed random variables, and propose probabilistic collision identification and constraint creation methods to robustly handle travel time uncertainty. We show that under reasonable assumptions our algorithm is optimal in terms of expected sum of travel times, while ensuring an upper bound on each pairwise conflict probability. Simulations and hardware experiments show that STT-CBS is able to significantly decrease conflict probability over CBS, while remaining within the same complexity class.
翻译:我们在一个图表中提出一种算法,用于寻找多孔介质的最佳路径,以便以用户指定的最大对比碰撞概率到达目的地。我们的算法,称为STT-CBS,使用基于冲突的搜索(CBS ), 以及代理商旅行时间模型(STT) 。我们用独立的伽马分布随机变量来模拟机器人在图的每个边缘旅行时间,并提出概率碰撞识别和制约生成方法,以稳健地处理旅行时间不确定性。我们表明,在合理的假设下,我们的算法在旅行时间的预期总和上是最佳的,同时确保每个对对称冲突概率的上限。模拟和硬件实验显示,STT-CBS能够大幅降低与CBS的冲突概率,同时保持同样的复杂等级。