We develop a dynamic trading strategy in the Linear Quadratic Regulator (LQR) framework. By including a price mean-reversion signal into the optimization program, in a trading environment where market impact is linear and stage costs are quadratic, we obtain an optimal trading curve that reacts opportunistically to price changes while retaining its ability to satisfy smooth or hard completion constraints. The optimal allocation is affine in the spot price and in the number of outstanding shares at any time, and it can be fully derived iteratively. It is also aggressive in the money, meaning that it accelerates whenever the price is favorable, with an intensity that can be calibrated by the practitioner. Since the LQR may yield locally negative participation rates (i.e round trip trades) which are often undesirable, we show that the aforementioned optimization problem can be improved and solved under positivity constraints following a Model Predictive Control (MPC) approach. In particular, it is smoother and more consistent with the completion constraint than putting a hard floor on the participation rate. We finally examine how the LQR can be simplified in the continuous trading context, which allows us to derive a closed formula for the trading curve under further assumptions, and we document a two-step strategy for the case where trades can also occur in an additional dark pool.
翻译:我们在线性二次曲线监管(LQR)框架内制定动态交易战略。在市场影响为线性,阶段成本为四级交易环境下,将价格中值回转信号纳入优化方案,在交易环境中,市场影响为线性,阶段性成本为四级,我们获得了最佳交易曲线,对价格变化作出机会性反应,同时保留其满足顺利或艰难完成制约的能力;最佳分配是时价和任何时间的未完成份额数目的接近,而且可以完全迭接地获得;它还在货币上具有侵略性,这意味着只要价格有利,就加速价格的快速回流信号,其强度可由黑暗从业者校准。由于LQR可能产生当地负参与率(即往返贸易交易),而这种负面参与率往往不可取,因此我们表明,在模型预测控制(MPC)方法之后,上述优化问题可以在假设性制约下得到改进和解决。特别是,它比在参与率上设置硬底线要更顺和更符合完成限制。我们最后研究如何在持续交易环境中进一步简化LQR,从而使我们能够在交易中制定封闭式交易曲线的封闭式假设。