Standardized tests play a crucial role in the detection of cognitive impairment. Previous work demonstrated that automatic detection of cognitive impairment is possible using audio data from a standardized picture description task. The presented study goes beyond that, evaluating our methods on data taken from two standardized neuropsychological tests, namely the German SKT and a German version of the CERAD-NB, and a semi-structured clinical interview between a patient and a psychologist. For the tests, we focus on speech recordings of three sub-tests: reading numbers (SKT 3), interference (SKT 7), and verbal fluency (CERAD-NB 1). We show that acoustic features from standardized tests can be used to reliably discriminate cognitively impaired individuals from non-impaired ones. Furthermore, we provide evidence that even features extracted from random speech samples of the interview can be a discriminator of cognitive impairment. In our baseline experiments, we use OpenSMILE features and Support Vector Machine classifiers. In an improved setup, we show that using wav2vec 2.0 features instead, we can achieve an accuracy of up to 85%.
翻译:标准化测试在检测认知缺陷方面发挥着关键作用。 先前的工作表明,通过标准化图片描述任务的音频数据,自动检测认知障碍是可能的。 提交的研究不仅如此,还评估了我们从两个标准化神经心理测试(即德国SKT和CERAD-NB的德国版本)中获取的数据的方法,以及病人和心理学家之间的半结构临床访谈。在测试中,我们侧重于三个子测试的语音记录:读数(SKT 3)、干扰(SKT 7)和言语流畅(CERAD-NB1)。 我们表明,标准化测试的声学特征可用来对认知障碍者和非障碍者进行可靠的歧视。 此外,我们提供的证据是,即使从访谈随机语音样本中提取的特征也可能是认知缺陷的区别因素。 在我们的基线实验中,我们使用OpenSMILE特征和支持矢量机器分类器。 在改进的设置中,我们显示,使用 wav2vec 2.0的功能,我们可以实现高达85%的精确度。