The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures.
翻译:由于缺少大型数据集,脑-计算机界面(BCI)记录分类领域深层学习(DL)方法的成功受到限制。与EEG信号有关的隐私问题限制了建立由多个小型混合组合组成的大型EEG-BCI数据集的可能性。因此,在本文件中,我们提议以联合学习框架为基础,为EEEG分类建立一个新的隐私保护DL结构,名为FTL(FTL),名为Federald转移学习(FTL),该结构与单位变量矩阵合作,拟议结构利用域适应技术从多主题EEG数据中提取常见的歧视性信息。我们评估了PhysioNet数据集的功能,用于2级运动图像分类。在避免实际数据共享的同时,我们的FTL方法在主题适应性分析中实现了2%的更高分类准确性。此外,在缺少多主题数据的情况下,我们的架构与其他状态DL结构相比,提供了6%的准确性。